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1. The transverse force caused by RF kick and wake field in the linear accelerator 
has one component that is not zero on the accelerating beam axis.  However, this 
transverse force depends on the longitudinal coordinate of the particle inside the bunch, 
that causes an emitance dilution.   
 Let’s consider the simplest model of the emittance dilution produced by the RF 
kick and wake in the ILC main linac. The linac with “homogeneous” focusing and 
acceleration will be considered.  The particle transverse dynamics is described by the 
following equation of motion: 
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where Ffocus is focusing force,  Fkick  is a kick per unit length, s is the particle distance 
from the bunch center.  The kick Fkick is equal to 
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where G is acceleration gradient, 
z

y

V
V

 is RF kick, k=2π/λRF, λRF is RF wavelength, ϕ is 

RF phase, Q is the drive bunch charge,  is the transverse wake potential per 
unit length, s is the distance from the bunch center, s<<λ
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RF . The first term is responsible 
for force that acts on the bunch particles the same way, and, thus, may be compensated 
using the beam alignment technique. The second term is responsible for the kick different 
for the different parts of the bunch and, thus, cannot be compensated. Thus, we will 
consider the second term only. 
 For ILC collider the average beta-function β  is constant along the linac.  In this 
case, the equation of the transverse motion is the following (γ(z) is relativistic factor, z is 
longitudinal coordinate, U0 is the initial energy in eV): 
 



,)0('/)()(
0

2

U
sFxz

dz
dxz

dz
d γβγγ =+⎟

⎠
⎞

⎜
⎝
⎛  

 
or 
 

,
)(
)0(')(

)(
1

0
22

2

zU
sFx

z
x

z
z

zz
x

γ
γ

β
γ

γ
=+

∂
∂⋅

∂
∂⋅+

∂
∂                                                                           (1) 

 
In our case, 
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General solution of (1) may be expressed the following way: 
 

∫++=
z

dzzfzzGzxCzxCzx
0

'''
2211 ,)(),()()()(                                                              (2) 

 
where C1 and C2 are the constants determined by initial conditions, x1(z) and x2(z) are 
basic solutions of homogeneous equation,  
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f(z) is a right-hand, 
 

,
)()(

'
)(

0

0

z
F

zU
sF

zf
γγ

γ
≡=  

 
and G(z,z’) is the Green function: 
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and W(z’) is Wronskian: 
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For x(0)=0 and x’(0)=0 C1=C2=0. 
 
Note that  (3) is Bessel equation and  
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and 
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In our case, when 
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it is possible to use the Bessel functions approximation for large argument: 
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Introducing a new variable 
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where 
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The integrals in (4) are Fresnel integrals: 
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 For 2χ/π>>1 one has 
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Thus, from (2) and (5) one can find 
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or 
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ne can see that the rf kick simply shifts the center of betatron oscillations off the axis. 

. For ILC Main Linac one has  

O
Because this shift depends on the longitudinal particle coordinate inside the bunch, the 
r.m.s. emittance averaged over the bunch increases.  
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Im =1.17e-5 (HFSS calculations, RF phase ϕ  is -5.3°, [1]) 

G=23.93  MeV/m (31.5 MeV/m in the structures) ; 

; 

eV); 
 GeV) 

e x (z) and x’(z) for s = -σ are shown calculated by direct integration of the Eq. (1)  and 

σ=0.3 mm; 
U0=15 GeV
λRF=0.23 m; 
γ0=3e4 (15 G
γ(zmax)=4.36e5 (223
 
th
according to the formula (6)  for zero initial condition for both x and x’. Calculations 
were made for β = 83 m. One can see that the analytical solution works pretty well. 
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Figure 1. (a)  x(z) and (b) x’(z) calculated by direct integration (purple) and analytically 
(blue). 

 
In Figure 2 vertical coordinate y(z) dependence is shown calculated numerically by 
PLACET [2] (blue) and LUCRETIA [3] (black) for realistic TESLA lattice structure (but 
no misalignments and no wakes) and analytically (red) according to formula (6) for zero 
initial conditions and for s = 0.3 mm. In order to fit the betatron phase the average  β-
function in (6) was taken 83 m.  Results of PLACET and LUCRETIA coincide with the 
precision of about ±2 nm. 
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Figure 2. The electron trajectory calculated by PLACET (blue), LUCRETIA (black) and 
analytically, based on the smooth approximation for the focusing system (red). Results of 

PLACET and LUCRETIA coincide. 
 
3. Note that for the bunch matched to the focusing system having β=const  
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where ψ is the particle betatron phase. 
The r.m.s.  emittance of the bunch is equal to  
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Using (6) and (7) and averaging over transverse and longitudinal coordinates one has 
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where ε0 is initial r.m.s. emittance and <s2> is r.m.s. bunch length. For Gaussian 
longitudinal bunch profile one has  
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If the r.m.s.  emittance dilution is small compared to the initial emittance, i.e., if 
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If the focusing system is design such a way, that zmax/β =2πn, then 
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and r.m.s.  emittance dilution is 
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If there is no acceleration, the minimal r.m.s.  emittance dilution is zero.  
 
4. One can see from the Formula (9), that the r.m.s. emittance oscillates with the 
period equal to the betatron wavelength 2πβ . It may be illustrated in the simplest case, 
when there is no acceleration. In Figure 3 the phase diagram is shown for three transverse 
bunch cross sections that correspond to head, center and tail of the bunch. Initially the 
areas in phase space occupied by the particles that belong to these cross sections 
coincide. But the rf kick is a permanent force that has different sign for head and tail of 
the bunch, moving the potential well, where the particles oscillate, off the (x,x’β)-
coordinate center in different directions for tail and head. Thus, the center of rotation in 
phase space is different for different cross sections (head, center and tail of the bunch), 
and areas in the phase space occupied by the particles that belong to different cross 
section are not coincide, when the betatron phase is not equal to 2πn.  Thus, minimal 
r.m.s. emittance corresponds to the betratron phase of 2πn and is equal to the initial r.m.s. 



emittance as illustrated in Figure 3. Maximal r.m.s. emittance corresponds to the betatron 
phase of (2n+1)π. In longitudinal geometrical space cross section the bunch tilt oscillates 
as shown in Firgure 4.  
 

 
 

 
 
Figure 3. The phase diagrams for different betatron phase for particle that belongs to 
different transverse bunch cross section: head (red), center (green), and tail (blue). No 
acceleration. The emittance of the entire bunch is shown in yellow.   
 

 



 
Figure 4. The bunch behavior in (x,z) coordinates without acceleration. On can see that 
the bunch is tilted versus the z-axis, but is parallel to z-axis, when the betatron phase is 
equal to 2πn. 
 
In presence of acceleration the circles of the rotation do not touch the coordinate center 
x=0 and x’=0 because the circle center xc shift (or potential well shift) is proportional 1/γ, 
but the circle radius R is proportional to 1/γ1/2 due to adiabatic decay (see Figure 5), and 
thus, the areas do not coincide when the betatron phase is 2πn , and the minimal r.m.s. 
emittance is greater than the initial one. In Figure 6 the phase diagram is shown for three 
transverse bunch cross sections after acceleration.  
 

 
Figure 5. Center of rotation and radius for the particle with x(0)=0 and x'(0)=0 for the the 

bunch head (red) and tail (blue) after acceleration. 
 



 
Figure 6. The phase diagrams for different betatron phase for particle that belongs to 
different transverse bunch cross section: head (red), center (green), and tail (blue). in 
presence of acceleration. The emittance of the entire bunch is shown in yellow.  In 
longitudinal geometrical space cross section the bunch tilt oscillates as shown in Firgure 
7. 

 

 
 

Figure 7. The bunch behavior in (x,z) coordinates with acceleration. 
 
5. For the initial vertical r.m.s emittance of 20 nm the r.m.s. emittance dilution 
versus z is shown in Figure 8, calculated numerically by PLACET (blue) and LUCRETIA 
(black) for the same TESLA lattice structure (no misalignments and no wakes as well) 
and analytically (red) according to formula (9). In order to fit the betatron phase the 
average  β-function in (9) was taken 83 m. One can see that the minimal values of the 



vertical r.m.s. emittance dilution calculated by PLACET and LUCLETIA are close to 
estimation by formula (9).  
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Figure 8. Vertical emittance change vs. z calculated numerically using PLACET (blue), 
LUCRETIA (black) and analytically (red) using the formula (9). 
 
6. In general case, when the average rf-kick and wake caused by couplers is 
compensated by the beam alignment correction, the emittance dilution can be expressed 
by the formula  
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For the ILC cavity one has  
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=(-7.3+11.1i)×10-6,  

ϕ=-5.3°,  
G=23.93  MeV/m (31.5 MeV/m in the structures)  and wake  is  shown in 
Figure 9 (vertical and horizontal components) for the bunch r.m.s. length of 0.3 mm [4]: 
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Figure 9. Transverse wake potential caused by the couplers (per cavity) for the bunch 

r.m.s. length of 0.3 mm. 
 

Dependence of the   versus s is shown in Figure 10 in red. In blue the acceleration 
RF field versus s is shown. The total vertical wake is shown in pink.  The bunch profile is 
shown also in black in a.u.  One can see that rf field and wake has the same slope and do 
not compensate each other. 
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For these parameters one has for Fσ  from (11) and for the minimal vertical  emittance 
dilution  
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the following results for the main linac with the TESLA lattice (β=83 m): 
 
 



Table I 
 

 Fσ ,V/m ε∆ , nm  
 formula (12) 

ε∆ , nm 
PLACET 
(1-to-1 correction and dispersion 
removal) 

rf-kick only 2.3 0.11 0.16  
wake only 3.9 0.31 0.32  
rf-kick + wake 6.1 0.74 0.85  
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One can see that  Formula (12) gives good estimation for the emittance dilution caused 
by the rf-kick and wave from the couplers in presence of 1-to-1 correction and dispersion 
removal.  
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